ãAIãçæããã³ã³ãã³ãããã人éãããã
ãAIãçæããã³ã³ãã³ãããã人éãããã
Type your question, upload a photo/PDF, or sketch on the canvas. Our math AI analyzes your problem and shows every step, like a tutor, not just a calculator.


Launch any example and we'll solve it with full steps, perfect to see our math problem solver in action.
Solve 2x+5=17 2x + 5 = 17 2x+5=17
Factor x²â5x+6 x^2 - 5x + 6 x²â5x+6
ddx(3x³â4x) \frac{d}{dx}(3x^3 - 4x) d/dx(3x³â4x)
â«(2x+1) dx \int (2x + 1) \, dx â«(2x+1)dx
Solve sin(Ξ) = â3/2 for 0° †Ξ < 360° sin(Ξ) = \tfrac{â3}{2} 0° †Ξ < 360°
Area of an isosceles triangle with base 10 and sides 13
Mean and standard deviation of {4,7,9,10} \{4,7,9,10\} {4,7,9,10}
A train travels 120 km in 1.5 hours. What's the average speed?
Our free math solver uses advanced math AI to understand your question from text, photos, or PDFs and return clear, step-by-step solutions.
Type your question, paste text, upload a photo/PDF (our math picture solver supports handwritten images), or draw on the canvas.
Our AI math solver interprets the problem, computes the result, and generates clear step-by-step reasoning with graphs when helpful.
Expand explanations, ask follow-ups, and try similar problems. Turn any solution into a quick quiz for retention.
Basic calculators compute. An AI Math Solver teaches.
See why each step is valid.
A true math AI solver and AI math problem solver, not just buttons and symbols.
Natural-language input and structured solutions.
Automatic graphs and key diagrams when relevant.
Convert solutions to quizzes; revisit history anytime.
A modern math AI that meets you where you are, type, speak, upload, or sketch.
| Feature | Basic Calculator | Our AI Math Solver |
|---|---|---|
| Multi-step logic | ||
| Step-by-step explanations | ||
| Photo input | ||
| Word problems | ||
| Detailed explanations | ||
| Practice quizzes |
AIæ€ç¥ããŒã«ã䜿ã£ãŠãããªãã®ããã¹ããAIã§æžãããã³ã³ãã³ããšããŠãã©ã°ãç«ã€ãã©ããããã§ãã¯ããŠãã ããã
AIããã¹ãã人éã®ãããªã³ã³ãã³ãã«å€æãäž»èŠãªæ€åºããŒã«ãã¹ãŠã§äººéãšå€å®ãããã
ã¹ãã¬ã¹ã軜æžããA+ã®ãšãã»ã€ãå³åº§ã«äœæããŸãã
æ°åŠãœã«ããŒã®ä»çµã¿ã«ã€ããŠæããããã質åãžã®åçãèŠã€ããŠãã ããã
ã¯ããã¢ã«ãŠã³ããäœæããã«ç¡æã®æ°åŠãœã«ããŒã䜿çšã§ããŸããã¢ã«ãŠã³ãïŒä»»æïŒã¯ãå±¥æŽã®ä¿åãæé ã®ãšã¯ã¹ããŒããã¯ã€ãºã§ã®ç·Žç¿ã«åœ¹ç«ã¡ãŸãã
ç§ãã¡ã®AIæ°åŠãœã«ããŒã¯ãåã¹ãããã確èªã§ããããã«éæãªæ®µéçãªæšè«ã瀺ãããã«èšèšãããŠããŸããäž»èŠãªãããã¯ïŒä»£æ°ã埮ç©åãçµ±èšã幟äœãäžè§é¢æ°ïŒã確å®ã«åŠçããŸãããã©ã®ããŒã«ãšåæ§ã«ééããç¯ãå¯èœæ§ããããŸããéèŠãªã¹ãããã¯åžžã«ç¢ºèªããŠãã ããã
ã¯ããæ°åŠç»åãœã«ããŒã¯ãå°å·ãããåé¡ããã»ãšãã©ã®ææžãã®åé¡ã®åçãã¹ã¯ãªãŒã³ã·ã§ãããåãä»ããŸããæè¯ã®çµæãåŸãã«ã¯ãè¯å¥œãªç §æã䜿çšãããã€ãåãåãããŒãããé¿ããŠãã ãããèªèãäžæç¢ºãªå Žåã¯ãåé¡ã®äžéšã«æ³šéãä»ããããæžãçŽãããããããšãã§ããŸãã
æ°åŠåé¡ãœã«ããŒã¯çããå°ãåºãæ¹æ³ã説æããŸããæ§é åãããã¹ããããå©çšå¯èœãªå Žåã¯ä»£æ¿ã®æ¹æ³ã颿°ã®ã°ã©ãããã©ããŒã¢ããã¬ã€ãã³ã¹ã衚瀺ãããé»åã®åäžã®æ°å€åºåãã¯ããã«è¶ ããŠããŸãã
ã¯ããããã©ã«ãã§ã¯ãAIæ°åŠãœã«ããŒã¯å®å šãªæ®µéçãªå èš³ãè¿ããŸãã詳现ã®å±éãæãããã¿ãä»»æã®ã¹ãããã«ã€ããŠããªãããšè³ªåããããšãã§ããå®äºããè§£çãç°¡åãªç·Žç¿ã¯ã€ãºã«å€æã§ããŸãã
ã¯ããã§ããŸããAIæ°åŠåé¡ãœã«ããŒã¯èªç¶èšèªãèªã¿åããäœãåãããŠããããç¹å®ãã倿°/åäœãèšå®ããæçµçµæãŸã§ã®æšè«ã瀺ããŸããåé¡æãææ§ãªå Žåã¯ãç°¡åãªç¢ºèªã®è³ªåãããå ŽåããããŸãã
æ°åŠãœã«ããŒã¯ãã¹ã¯ããããšã¢ãã€ã«ã®ãã©ãŠã¶ã§åäœããŸããäžè¬çãªç»å圢åŒïŒJPG/PNG/HEICïŒãšPDFã®ã¢ããããŒãããµããŒãããŠããŸãããŸããçŽæ¥å ¥åããã£ã³ãã¹ãžã®æç»ãå¯èœã§ããã¹ããŒããã©ã³ã®ã«ã¡ã©ããã®ã¢ããããŒãã¯ãã¯ã€ãã¯ã¹ãã£ã³ã«æé©ã§ãã
ãåãåããããã ããã°ãããã«å¯Ÿå¿ããããŸãã
ãåãåãã